
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 319 (2009) 50–57

www.elsevier.com/locate/jsvi
Distributed piezoelectric modal sensors for circular plates

Alberto Donoso�, José Carlos Bellido
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Abstract

In this note, we deal with finding the shape of distributed piezoelectric modal sensors for circular plates with polar

symmetric boundary conditions. The problem is treated by an optimization approach, where a binary function is used to

model the design variable: the polarization profile of the piezoelectric layer. The numerical procedure proposed here allows

us to find polarization profiles which take on two values only, i.e. either positive or negative polarization, that isolate

particular vibration modes in the frequency domain.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Modal sensors/actuators [1] (hereafter MSA) are those which measure/excite a single mode of a structure,
but are not sensitive to the rest of the modes. Several applications on MSA can be found in Ref. [2]. In active
control, for instance, the use of MSA reduces the spillover problem by filtering annoying high-frequency
modes that affect the stability of closed-loop systems. The well-known reciprocal property of piezoelectric
materials remains valid between a modal sensor and a modal actuator [1], that is to say, the sensor shape that
observes a particular mode (modal sensor) is the same as the actuator shape that excites that particular mode
(modal actuator); hence, in terms of the design we just have to focus on one of them. The sensors and
actuators may consist of a number of discrete transducers or a distributed transducer material. In the first
case, both the location and the gain have to be determined for each [3,4]. Unlike discrete transducers,
distributed transducers are designed by shaping the surface electrode (sometimes also the polarization profile)
of the piezoelectric layers, allowing us to determine both location and gain at the same time and in this way
reducing the signal processing requirements.

To design distributed modal sensors for plate-type structures, two main variables (among others)
must be taken into account: the effective surface electrode that is modeled by a binary function weðx; yÞ
(we equals 1 if ðx; yÞ is covered by an electrode: otherwise, it is 0), and the polarization profile of the
piezoelectric sensor layer, modeled by another binary function wpðx; yÞ (which typically takes on the values �1
and 1 only).
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The problem of finding distributed MSA for beams is confined to computing the normalized surface
electrode width, FðxÞ (given by the integral of weðx; yÞwpðx; yÞ along the y-axis direction), with x being the
longitudinal axis of the structure. For such cases, it is proved both theoretically and experimentally in Ref. [1]
that either the modal actuator profile or the modal sensor profile is found as a constant times the second
derivative of that particular mode shape (or the curvature). An appropriate interpretation of such a function
FðxÞ gives us all the information we need to construct the aforementioned distributed MSA: on the one hand,
its absolute value indicates the gain distribution of the transducer and on the other, it forces the polarization
profile (positive or negative) of the piezoelectric layers to vary along the x-axis direction in accordance with its
profile.

Basically, the condition which allows us to construct distributed MSA is the orthogonality principle among
the vibration mode shapes of a structure [1]. This orthogonality principle can be easily proved for beams
whichever the boundary conditions considered, as well as for plates with pinned boundary conditions, because
in such cases the modes are given by sinusoid functions, and of course, these verify the criterion. However, a
general orthogonality principle does not exist for the vibration mode shapes of plates [5,6], because of the
complexity of the boundary conditions, and therefore, we cannot state thatZ

S

frjfmn dxdy ¼ 0 for ram; jan, (1)

where frj is the mode shape of the rj-mode and S is the area covered by the piezoelectric layers, is true in
general. Of course, a modal orthogonality principle is satisfied among the modes, but including weight
functions (both stiffness and mass matrices in the finite element formulation). That is not the orthogonality
principle expressed in Eq. (1), which is exactly what we would need.

Many authors (see Ref. [7] and the references therein) have studied the problem of designing distributed
MSA for two-dimensional structures, but to date, a systematic way of doing this has not been found.
In the pioneering work [1], a way of creating ideal distributed MSA for a four-sided simply supported
rectangular plate is suggested. As discussed above, the particular boundary conditions for this situation make
it possible to obtain theoretically a family of distributed MSA, but the problem now is that normalized
distributed MSA take on values in the continuous interval ½�1; 1�. One possible physical interpretation is to
assume we � 1 and to require a precisely implemented variation in the polarization profile, wp, over x and y,
but as pointed out in Ref. [6], this could be really difficult to achieve in practice, from a manufacturing point of
view.

In line with the model considered in Ref. [7] and using the philosophy of the topology optimization
problems (the reader is referred to Ref. [8] for an excellent overview of the method and different applications),
a systematic procedure is proposed in Ref. [9] for designing distributed MSA for rectangular plates through an
appropriate optimization approach. This approach uses two binary functions to decide which regions of the
piezoelectric layers have to be covered by an electrode and which ones not. In the former case, the functions
are used to decide which parts of the transducer material must be polarized in the upward direction, and which
ones in the opposite direction.

The aim of this paper is to extend this approach to the study of circular plates with polar symmetric
boundary conditions. The layout of the paper is as follows: in the next section an optimization approach is
proposed and the physics of the problem is briefly discussed. Later on, a mathematical analysis of the problem
is carried out showing that optimal solutions actually correspond to entirely covering the layers by an
electrode and polarization profiles taking on two values only. Finally, several numerical examples for two case
studies are included to illustrate that the topologies obtained make it possible to isolate particular modes in the
frequency domain.

2. Formulation of the optimization problem

We consider a thin circular plate with a piezoelectric sensor layer of negligible stiffness and mass compared
with the plate bonded to the top surface as shown in Fig. 1.

Concerning the piezoelectric stress/charge constants [10], we will assume that e31 ¼ e32 ¼ e (i.e. the piezo’s
charge per unit area is the same in both radial and circumferential directions) and e36 ¼ 0 (i.e. the sensor’s
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piezoelectric axes are coincident with the geometric axes of the plate), so that the response of the piezoelectric
sensor can be expressed as

qðtÞ ¼ �
ðhp þ hsÞ

2
e

Z 2p

0

Z R

0

wewpðr; yÞ
q2w

qr2
þ

1

r

qw

qr
þ

1

r2
q2w

qy2

� �
rdrdy, (2)

where q is the sensor output charge, hp the thickness of the plate, hs the thickness of the sensor, w the out-
of-plane displacement of the plate and R the radius of the plate.

In the case of axisymmetric boundary conditions, the out-of-plane displacement of a circular plate, w, can
be written by the modal expansion [5]

wðr; y; tÞ ¼
X1
m¼0

X1
n¼0

fmnðrÞ cosðmyÞZmnðtÞ, (3)

where fmnðr; yÞ ¼ amnJmðlmnr=RÞ þ bmnImðlmnr=RÞ and Jm and Im are the Bessel function and the modified
Bessel function of the first kind, respectively. Inserting Eq. (3) in Eq. (2), we arrive at

qðtÞ ¼ �e
ðhp þ hsÞ

2

X1
m¼0

X1
n¼0

BmnZmnðtÞ (4)

with

Bmn ¼

Z 2p

0

Z R

0

wewpðr; yÞ f00mnðlmnr=RÞ þ
1

r
f0mnðlmnr=RÞ �

m2

r2
fmnðlmnr=RÞ

� �
cosðmyÞrdrdy, (5)

such that weðr; yÞ 2 f0; 1g (to place an electrode or not) and wpðr; yÞ 2 f�1; 1g (positive or negative polarization).
Truncating Eq. (4) in the first M modes, the following optimization approach:

Maximizewe;wp
Bkðwe; wpÞ (P)
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subject to

Bjðwe; wpÞ ¼ 0 for j ¼ 1; . . . ;M and jak (6)

is proposed to find an ideal modal sensor that observes the kth mode (i.e. the coefficient Bk is maximized)
among the first M modes and filters the rest of them (i.e. the rest of the coefficients Bj with jak are cancelled).
For convenience, both the modes and the coefficients are now indexed with the single integer j rather than m

and n.
3. Mathematical analysis of the optimization problem ðPÞ and numerical approach

From a mathematical perspective problem (P) is a quite simple optimization problem: maximizing a linear
cost subject to linear constraints. However, a difficulty arises due to the fact that the optimization variables we

and wp take on values on the non-convex sets f0; 1g and f�1; 1g. In order to better explain this point, let us
collect both functions we and wp together on the single function w, so that they would then take on values on the
(non-convex) set f�1; 0; 1g. Notice that we and wp appear together multiplied both in the cost functional and in
the constraints. The optimization problem (P) can be reformulated as

Maximizew2f�1;0;1g BkðwÞ (P)

subject to

BjðwÞ ¼ 0 for j ¼ 1; . . . ;M and jak. (7)

It is well known that structural optimization problems and material design problems, both formulated as
optimization problems in which the optimization variables are functions taking on a finite number of values
(and then taking values on a non-convex set), typically lack optimal solutions. It can be observed in those
problems that minimizing sequences of designs develop high oscillations between the possible values they may
take on, and consequently they do not converge to any admissible design in the proper sense. In practice,
optimal solutions show a microgeometry that cannot be described by usual functions taking on a finite
number of values. In this situation, a relaxation procedure must be implemented in order to obtain a
manageable (relaxed) formulation of the problem, both in a mathematical and a numerical sense. The usual
procedure consists of enlarging the set of admissible designs, so as to include all the mixtures obtained from
the admissible designs for the original problem. A very good account of structural and material optimization
from an engineering point of view is [8]. After this discussion, we cannot hope in principle problem (P) to
admit optimal solutions, and we should work rather with a relaxed formulation, (RP), of it, namely,

Maximize�1pr�1 BkðrÞ (RP)

subject to

BjðrÞ ¼ 0 for j ¼ 1; . . . ;M and jak. (8)

Problem (RP) is actually the same problem as (P), but we have changed the set where we optimize to include
any function taking on values between �1 and 1 instead of functions taking on the values f�1; 0; 1g. Now,
based on standard mathematical arguments, we are sure that (RP) is a well-posed problem, i.e. it admits
optimal solutions. Further, what is very interesting in this problem is the fact that due to its linear nature,
optimal solutions actually take on values �1 or 1 only. This is stated in the following theorem.

Theorem 1. Any optimal solution for problem (RP) takes on the values either �1 or 1.

This theorem has been proved in Ref. [9] in the context of rectangular plates and the reader is referred to
Ref. [9] for a more detailed discussion on the mathematical issues of this problem as well as all information
concerning the proof.

A direct and very remarkable consequence of Theorem 1 is that we will never find with MSA that there are
regions in which we do not place an electrode by using our procedure; we just find a polarization profile
(positive or negative) of the piezoelectric MSA distributed throughout the whole domain.
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For the numerical simulation we discretize the circular plate in N finite elements (typically NbM) and
obtain the discrete optimization problem:

Maximizeq : F
T
k q (9)

subject to

FT
j q ¼ 0 for j ¼ 1; . . . ;M and jak,

� 1pqp1, (10)

where fFjgj¼1;...;M is the family vector of the Laplacian (in polar coordinates) of the first M modes multiplied
by r and q is the vector of the design variables. This approach has the advantage that both the objective
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Fig. 2. Polarization profiles that measure the second mode ((a) and (b)) and the twelfth mode ((c) and (d)) for a clamped circular plate

when considering M ¼ 16.
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function and the constraints are linear and hence, it can be easily solved by the simplex method. This very
simple optimization procedure makes perfect sense, since we know that optimal solutions for the continuum
are extremals of the set of designs verifying the constraints (this is straightforward from Theorem 1), and then,
we are actually looking for approximations of these optimal designs on the set of extremals for the discrete
problems, by using the simplex method applied to it. This is actually corroborated by the fact that, in our
simulations, intermediate values between �1 and 1 in the optimal profiles tend to disappear when we consider
Fig. 3. Polarization profiles that measure the kth mode for a simply-supported circular plate when considering M ¼ 12: (a) k ¼ 1, (b)

k ¼ 2, (c) k ¼ 3, (d) k ¼ 4, (e) k ¼ 5, (f) k ¼ 6, (g) k ¼ 7, (h) k ¼ 8, (i) k ¼ 9, (j) k ¼ 10, (k) k ¼ 11, (l) k ¼ 12.
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finer and finer meshes (see Ref. [9]). Actually for a mesh of 200� 200 elements we cannot even notice such
intermediate values in any of the examples we have dealt with.

It is worthwhile emphasizing that the applicability of this technique to other more general structures is fairly
straightforward. We simply have to find the proper cost functional to the physics of the problem (i.e. the
magnitude of the modal response in our approach) and then to compute the mode shapes at interest, either
analytically, numerically (by using the subspace iteration method, for instance) or experimentally (using modal
data procured by a laser vibrometer, for instance). Finally, the numerical problem is solved by any
mathematical programming method as both the objective function and the constraints continue to be linear.
4. Examples

We illustrate our optimization approach through two case studies varying the boundary conditions in a
circular plate of unity radius. In all the examples, a mesh of 200� 200 elements has been used to compute the
mode shapes as well as to run the linear optimization problem.

In this first example, a clamped circular plate is considered. It is well known that, for this particular case, it
is possible to express in closed form both natural frequencies and mode shapes [5]. In Fig. 2(a) and (c), the
polarization profiles corresponding to a modal sensor sensitive to the second mode and to the 12th mode (see
Fig. 2(b) and (d)), respectively, among the first sixteen modes ðM ¼ 16Þ, are shown. As we can see, at the end
of the optimization process, the design variable takes on two values only: r ¼ 1, represented by a black color,
and r ¼ �1 by a white color, referring to regions with opposite polarization (but, of course, inverting the
polarization in all layers, the profile continues to be optimal because it would be the counterpart of the
corresponding mode inverted in sign).

To filter any following mode, we merely have to include it by adding a new constraint in the optimization
problem, but, as can be expected, the profile changes its topology when the number of modes considered is
increased (see Ref. [9] for rectangular plates).

A simply supported circular plate is considered as the second example. As before, the modes can be
obtained in closed form (see Ref. [5]). Taking M ¼ 12 now, polarization profiles that isolate the first 12 modes
for this new situation are shown in Fig. 3.

Depending on the applications, it could be interesting to consider other objective functions or even extra
constraints on the curvature, for instance (see Ref. [3] for beam-type structures). This issue will be explored in
the near future by the authors.
5. Conclusions

This note has presented a new way to systematically design distributed piezoelectric MSA for circular plates
with polar symmetric boundary conditions. A linear optimization approach based on the sensor response is
proposed, taking both the effective surface electrode and the polarization profile of the sensor layer as the
design variables. It was analytically proved, and numerically corroborated in several examples, that optimized
patterns that measure particular vibration modes correspond to the results obtained by entirely covering the
layers by an electrode (we � 1) and polarization profiles taking on two values only. We plan to extend this
approach to shell-type structures in the near future.
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